Post-angiography Acute Kidney Injury

Richard Solomon


Full Text



  • Bartels ED, Brun GC, Gammeltof A, et al. Acute anuria following intravenous pyelography in a patient with myelomatosis. Acta Med Scand 1954; 150: 297-302;
  • Wright RS, Anderson JL, Adams CD, et al. 2011 ACCF/AHA focused update of the Guidelines for the Management of Patients with Unstable Angina/Non-ST-Elevation Myocardial Infarction (updating the 2007 guideline): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in collaboration with the American College of Emergency Physicians, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol 2011; 57: 1920-59;
  • Thomsen HS. Guidelines for contrast media from the European Society of Urogenital Radiology. AJR Am J Roentgenol 2003; 81: 1463-71;
  • Mehran R, Aymong ED, Nikolsky E, et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol 2004; 44: 1393-9;;
  • Heyman SN, Rosen S, Khamaisi M, et al. Reactive oxygen species and the pathogenesis of radiocontrast-induced nephropathy. Invest Radiol 2010; 45: 188-95;
  • Mager A, Vaknin Assa H, Lev EI, et al. The ratio of contrast volume to glomerular filtration rate predicts outcomes after percutaneous coronary intervention for ST-segment elevation acute myocardial infarction. Catheter Cardiovasc Interv 2011; 78: 198-201;
  • Prasad A, Ortiz-Lopez C, Kaye DM, et al. The use of the AVERT system to limit contrast volume administration during peripheral angiography and intervention. Catheter Cardiovasc Interv 2015; 86: 1228-33;
  • Gurm HS, Smith D, Share D, et al. Impact of automated contrast injector systems on contrast use and contrast-associated complications in patients undergoing percutaneous coronary interventions. JACC Cardiovasc Interv 2013; 6: 399-405;
  • Diab O, Helmy M, Gomaa Y, et al. Efficacy and safety of coronary sinus aspiration during coronary angiography to attenuate the risk of contrast induced acute kidney injury in predisposed patients. Circ Cardiovasc Interv 2017; 10: e004348;
  • Reinecke H, Fobker M, Wellmann J, et al. A randomized controlled trial comparing hydration therapy to additional hemodialysis or N-acetylcysteine for the prevention of contrast medium-induced nephropathy. Clin Res Cardiol 2007; 96: 130-9;
  • Zhang W, Zhang J, Yang B, et al. Effectiveness of oral hydration in preventing contrast-induced acute kidney injury in patients undergoing coronary angiography or intervention: a pairwise and network meta-analysis. Coron Artery Dis 2018; 29: 286-93;
  • Weisbord SD, Gallagher M, Jneid H, et al. Outcomes after Angiography with Sodium Bicarbonate and Acetylcysteine. N Engl J Med 2018; 378: 603-14;
  • Rojkovskiy I, Solomon R. Intravenous and Oral Hydration: Approaches, Principles, and Differing Regimens. Interv Cardiol Clin 2014; 3: 393-404;
  • Heyman SN, Brezis M, Epstein FH, et al. Early renal medullary hypoxic injury from radiocontrast and indomethacin. Kidney Int 1991; 40: 632-42;
  • McDonald JS, McDonald RJ, Lieske JC, et al. Risk of Acute Kidney Injury, Dialysis, and Mortality in Patients With Chronic Kidney Disease After Intravenous Contrast Material Exposure. Mayo Clin Proc 2015; 90: 1046-53;


Abstract: 423 views
HTML: 274 views
PDF: 213 views


  • There are currently no refbacks.