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Abstract

Macrolide antibiotics drew worldwide attention when their use was dramatically successful in the 
treatment of diffuse panbronchiolitis in 1980s. The success was attributed to their immunomodu-
latory effects, rather than their antimicrobial properties. Since then, studies have shown that ma-
crolides exert their immunomodulatory effects through several mechanisms, including suppression 
of proinflammatory cytokines, promoting apoptosis of inflammatory cells, improving phagocytic 
function, ameliorating airway hypersecretion, and inhibiting production of reactive oxygen species. 
Macrolides have also been studied in the treatment of asthma. This review highlights the role of 
macrolides in the treatment of asthma, presenting an overview of the main clinical trials. Despi-
te favourable preclinical data and reports of anecdotal successes, the results of clinical trials are 
conflicting. This may be due to the heterogeneous nature of asthma. Further studies are needed to 
identify particular subgroup of asthma that will respond to macrolides.
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Introduction

Macrolides consist of an expansive family of compounds characterised by the presence of a macrocyclic 
lactone ring. Interestingly, two broadly used immunosuppressive agents, silorimus (rapamycin) and 
tacrolimus (FK-506), are also members of macrolide family. However, these agents are not included 
when we use the term “macrolides” in this review unless otherwise indicated. 
Macrolides are classified according to the size of the lactone ring. Erythromycin-derived 14- and 
15-member macrolides draw particular interest due to their immunomodulatory function [1]. The 
immunomodulatory effect first drew considerable attention in the 1980s when long-term low-dose 
erythromycin treatment achieved large success in the treatment of diffuse panbronchiolitis [1]. Diffu-
se panbronchiolitis is a disease that is almost exclusively found in East Asia, especially in Japan. It is 
characterised by chronic cough, chronic sinusitis, sputum production, and progressive dyspnoea that 
eventually lead to respiratory failure and death. This was previously a commonly fatal disease with a 
five year survival rate of only 63%. The survival rate has improved to more than 90% since the intro-
duction of long-term low-dose erythromycin treatment [1-3]. This dramatic success was attributed 
to its immunomodulatory effects rather than its antimicrobial effect, because clinical improvement 
has been reported regardless of the state of chronic infection and despite the observation that anti-
biotic concentrations were frequently well below the minimum inhibitory concentration of several 
pathogenic bacteria [4]. Persistent airway colonization with bacteria despite the improvement was also 
demonstrated. 
Given this success, large efforts have been devoted to elucidate the mechanism of macrolide immuno-
modulatory effects. Clinically, macrolides have also been employed to treat other chronic inflammatory 
lung diseases, including cystic fibrosis, bronchiectasis, chronic obstructive pulmonary disease (COPD), 
post-transplantation bronchiolitis obliterans, chronic rhinosinusitis, and asthma, with varied results. 
In this review, we will first outline the current understanding of asthma pathogenesis. Next, we summa-
rise how macrolides affect the immune system in the context of asthma. Finally we present an overview 
of the results of clinical trials, and speculate on future directions for investigation. 

Pathogenesis of asthma 

Asthma is a chronic inflammatory disease of the airways, characterised by airflow obstruction and 
bronchial hyper-responsiveness. Autopsy and biopsy studies demonstrate airway infiltration with lym-
phocytes, eosinophils, and degranulated mast cells, denudation of airway epithelium, sub-basement-
membrane collagen deposition, and goblet cell hyperplasia [5]. Neutrophil infiltration is also seen in 
certain subgroups of patients [6-8]. An abnormal immune response, mediated by type 2 helper (Th2) 
cells, underlies this complex inflammatory process [9]. When a genetically susceptible individual is 
exposed to a certain antigen, the antigen is taken up, processed, and presented by antigen presenting 
cells such as dendritic cells. Upon stimulation by antigen presenting cells, Th2 cells excrete various 
cytokines and promote the immune reaction characteristic of asthma. The major cytokines excreted 
from Th2 cells are IL-4, IL-5, IL-6, IL-9 and IL-13 [5,10]. These cytokines stimulate IgE production by 
B cells. IgE binds to IgE receptors on mast cells. Mast cells are located mainly on the epithelial surface 
areas of the body such as bronchial mucosa. Cross linkage of the mast cell bound IgE by the antigen 
causes degranulation of the mast cells and release of preformed and newly formed bioactive media-
tors, including histamine and leukotrienes which in the lung cause bronchoconstriction and glandular 
secretion. Mast cells also produce several cytokines, including IL-1, IL-2, IL-3, IL-4, IL-5, granulo-
cyte-macrophage colony-stimulating factor, interferon-γ, and tumor necrosis factor, which promote 
proliferation and survival of T cells, eosinophils, and mast cells (positive feedback) and contribute 
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to persistence of the inflammation. Cytokines produced by Th2 and mast cells promote eosinophil 
proliferation and infiltration. Activated eosinophils produce inflammatory proteins, including major 
basic protein, eosinophil-derived neurotoxin, peroxidase, and cationic protein. Reactive oxygen spe-
cies are also produced. These chemicals directly injure airway epithelium. Eosinophils also produce 
leukotrienes, which contract airway smooth muscles, increase vascular permeability and may recruit 
more eosinophils [5,9-11]. 
The airway epithelial cells play an important role in initiation and maintenance of the inflammation in 
asthma [10,11]. Tight junctions between asthmatic epithelial cells are disrupted and allow easier entry 
of allergens and microbes into the subepithelial space, which leads to immune activation. Activated 
epithelial cells produce chemokines, such as eotaxin-1 and -2, RANTES and monocyte chemotactic-
proteins-3 and -4, which attract eosinophils, lymphocytes, and mast cells. Airway epithelial cells also 
produce nitric oxide, which contributes to airway inflammation [9]. 
The end result of these processes is persistent inflammation of the airways leading to airflow obstruc-
tion and bronchial hypersensitivity. If these processes are allowed to persist, airway remodelling cha-
racterized by subepithelial thickening and smooth muscle hyperplasia and hypertrophy ensues [10]. 
These changes result in irreversible airflow obstruction.
Recently, the contribution of neutrophilic inflammation in asthma is drawing special attention [6-8,12]. 
It is not uncommon and is often seen in patients with severe and poorly controlled asthma. Neutrophils 
are the most common inflammatory cells seen in adult asthma exacerbations.

Macrolide effects in asthma

Major macrolides immunomodulatory effects relevant to asthma are summarized in Table I.

Cytokines
A number of studies since the 1990s have de-
monstrated that administration of various ma-
crolides suppresses proinflammatory cytokine 
production in asthma and non-asthma, ex vivo 
and in vivo, both in animal and human subjects 
[13-71]. Proinflammatory cytokines in the lung 
demonstrated to be suppressed by macrolides 
include IL-1, 2, 3, 4, 5, 6, 8, 10, 13, TNFα, eo-
taxin, GM-CSF, RANTES, CCL20 (CTACK), 
CCL27 (MIP-3α), MIP-2, and VEGF. As noted 
above, Th2-type cytokines (IL-4, 5, 6, 9, and 
13), especially IL-5 as an eosinophil promoter, 
play a major role in pathogenesis of asthma. 
Noma et al. collected peripheral blood T cells from paediatric asthmatic patients who were sensitized 
by Dermatophagoides farimae and demonstrated roxithromycin suppressed antigen-stimulated T cell 
proliferation and production of IL-4 and IL-5 in a dose dependent fashion [13]. Lyn et. al similarly 
demonstrated azithromycin suppressed IL-5 production by T cells from asthmatic children ex vivo 
[14]. Beigelman et al. used an ovalbumin-sensitized mouse model of asthma and demonstrated that 
azithromycin attenuated leukocytosis in bronchoalveolar lavage (BAL) caused by antigen administra-
tion [15]. Furthermore, analysis of the BAL leukocyte differential demonstrated that azithromycin 
attenuated all inflammatory cell types including eosinophils, macrophages, lymphocytes, and neutro-
phils. However, the largest fold-reduction was noted in eosinophils. BAL cytokine levels of IL-5 and 

Immunomodulatory effect Reference

Suppression of proinflammatory cytokines 13-71

Promote apoptosis of neutrophils and 
lymphocytes

74-82

Improve amount and quality of airway 
secretion

73,87-92

Improve phagocytotic function 72,83-85

Antimicrobial effect 93-95

Suppresses ROS/NOS production 107-113

Table I. Immunomodulatory effects of 
macrolides
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IL-13, as well as chemokines, CCL2 (also known as monocyte chemotactic protein-1, MCP-1), CCL3 
(also known as macrophage inflammatory protein-1α, MIP-1α), and CCL4 (also known as macropha-
ge inflammatory protein-1β, MIP-1β) were also suppressed. Amayasu et al. showed asthmatic human 
subjects treated with 200 mg of clarithromycin twice daily for 8 weeks had significantly decreased 
blood and sputum eosinophils [16]. 
Even though these data indicate that macrolides do suppress Th2-type cytokines (IL-4,5, 6, and 13), the 
immunomodulatory effect of macrolides is most established in their suppression of IL-8 and TNF-α 
which are more closely linked with neutrophilic inflammation. Simpson et al. demonstrated that clari-
thromycin 500 mg twice daily can suppress IL-8 levels, neutrophil accumulation and activation in the 
airways in patients with noneosinophilic asthma [17]. It is increasingly known that non-eosinophilic 
asthma is common and neutrophilic inflammation plays an important part in the pathogenesis of this 
asthma variant [6-8,12]. Studies have demonstrated that neutrophilic inflammation is more resistant to 
corticosteroid treatment, and elevations of IL-8 level are found in these patients. Additionally, common 
irritants associated with asthma exacerbations such as air pollution, bacterial endotoxins, viral infec-
tions, and ozone, also cause neutrophilic inflammation [12]. Therefore, macrolides are attractive agents 
that may prove efficacious in both noneosinophilic and irritant asthma. 

Survival of inflammatory cells, hypersecretion and phagocytosis
The mechanism of persistent inflammation in asthma is unclear. However, it has been proposed that 
pre-programmed apoptosis and the phagocytosis of these apoptotic cells by macrophages (efferocyto-
sis) play an important role in the resolution of inflammation [72,73]. Mucus hypersecretion and cilliary 
dysfunction, which are characteristic of asthma, also impair clearance of the inflammatory cells which 
provides a nidus for bacterial colonization that further promotes persistence of inflammation [72]. 
Macrolides may work on each component of these processes. 
There is some evidence showing that macrolides can promote apoptosis of neutrophils and lympho-
cytes. Erythromycin, roxithromycin, clarithromycin, and azithromycin are shown to promote neu-
trophil apoptosis [74-76]. Suppression of lymphocytic survival is also shown in azithromycin and 
roxithromycin [77-79]. Some studies also suggest that macrolides may influence eosinophil survival 
[80,81]. However, it is not clear if these effects are through direct effects or above-mentioned suppres-
sion of cytokines and growth factors. Interestingly, some researchers have reported enhanced apoptosis 
in bronchial smooth muscle cells [82]. 
Clearance of the apoptotic cells is mainly carried out by macrophages (efferocytosis). Disturbance of 
this process can lead to secondary necrosis of inflammatory cells and exacerbation and persistence of 
inflammation. In COPD (chronic obstructive pulmonary disease), there is evidence that this patho-
logic process is important [72]. In asthma, the evidence is scarce, but Huynh et al. did demonstrate 
fewer phagocytic bodies in BAL from patients with severe asthma compared with control patients or 
patients with mild to moderate asthma [83]. They also demonstrated that macrophages from patients 
with severe asthma have decreased phagocytotic function in vitro. Together, these data indicate that 
this pathologic process may also play a role in asthma. Macrolides were shown to improve phagocyto-
tic function of alveolar macrophages in healthy volunteers [84] and in COPD patients [85]. Therefore, 
macrolides may improve clearance of inflammation by improving inflammatory cell clearance via 
phagocytosis.
Airway mucus hypersecretion is an important pathophysiological feature of asthma. Excessive mucus 
can obstruct airways and impairs clearance of inflammatory cells which leads to persistence of inflam-
mation [73,86]. Macrolides decrease mucus secretion via several mechanisms such as suppression of 
NF-kB, cytokine production, and direct inhibition of chloride channels [87-89]. Macrolides not only 
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decrease the amount of secretion but also alter the rheological character of the mucus and making it 
easier to expectorate [90-92]. 

Chronic infection
Macrolides may also improve asthma through their intrinsic antimicrobial effect. Persistent atypical 
bacterial infections, especially with Chlamydophila pneumoniae and Mycoplasma pneumoniae, have 
been implicated in the pathogenesis of asthma. Martin et al. examined clinical specimens from the na-
sopharynx, the oropharynx, and the lung (BAL, brushing, and endobronchial biopsy) for the presence 
of clamydial or mycoplasmal infection from 55 stable asthmatic patients and 11 healthy controls in the 
United States [93]. Thirty-one asthmatic patients (56.4%) were found to have positive PCR results for 
either M. pneumoniae (25 patients or 45.5%) or C. pneumoniae (6 patients or 10.9%). A study from Tur-
key also reports higher rates of PCR positivity for C. pneumoniae in stable asthmatic patients compared 
with healthy subjects [94]. These data suggest that chronic atypical bacterial infection is common in 
asthmatic patients and it may contribute to the pathogenesis of asthma. 
Macrolides are well known for their superior coverage of atypical organisms. Simply eradicating chro-
nic infection through the use of macrolides, therefore, may significantly improve asthma control in the-
se patients. Kraft et al. conducted a randomized placebo-controlled trial of clarithromycin treatment in 
55 stable asthmatic patients [95]. All of the patients underwent bronchoscopy and were evaluated for 
C. pneumoniae and/or M. pneumoniae PCR positivity. Clarithromycin treatment resulted in a signifi-
cant improvement in the FEV1 only in the PCR-positive subjects (2.50 ± 0.16 l, to 2.69 ± 0.19 l, mean ± 
SEM; p = 0.05). Clarithromycin-treated PCR positive patients also demonstrated a greater reduction in 
inflammatory cytokines in the lung than PCR-negative patients. 

Viral infection
Viral infection is a major cause of asthma exacerbations (80-85% in children, 70-75% in adults [96]). 
There is some evidence that macrolides can ameliorate respiratory viral infection [97-103]. Howe-
ver, there are few data about macrolide effect specifically on virus-induced asthma exacerbation. One 
randomized controlled trial evaluated a group of patients with asthma exacerbation of whom 60% 
had serological evidence of Mycoplasma or Chlamydiophila infection. In this population, telithromycin 
treatment did demonstrate a decrease in asthma symptom scores [104]. While many of these patients 
may have had viral infections, it is difficult to assess the specific benefit of macrolides in regards to viral 
infection in this study.

Reactive oxygen/nitrogen species (ROS/RNS) production
ROS/RNS are produced by inflammatory cells (neutrophils, eosinophils, and alveolar macrophages) 
and contribute to airway inflammation in asthma [105,106]. Data suggest that macrolides interfere 
with ROS/RNS production [107-113]. For example, Borszcz et al. demonstrated that the human eosi-
nophil and neutrophil respiratory burst was inhibited by up to 54% with clarithromycin [113]. 

Clinical trials

Despite the above mentioned promising results from various experimental models and anecdotal suc-
cesses, clinical trials are somewhat disappointing. A summary of randomized controlled trials is pre-
sented in Table II. 
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Author,  
year [ref.]

Patients
Study design/
interventions

Main outcomes Note

Nelson, 
1993 [117]

75 adult 
patients 
with steroid-
dependent 
asthma

Double-blinded, 
randomized, placebo-
controlled study.
Troleandomycin plus 
methylprednisolone vs. 
methylprednisolone alone

No difference in steroid dose reduction
More steroid-related adverse events in 
troleandomycin group

See note from 
Kamada, 1993 
section

Kamada, 
1993 [115]

18 children 
with severe, 
steroid-
requiring 
asthma

Double-blinded, 
randomized, 3-arm 
parallel study.
Troleandomycin plus 
methylprednisolone 
vs. troleandomycin 
plus prednisone vs. 
methylprednisolone only

No difference in pulmonary function nor 
PC20-methacholine between 3 treatment 
arms.
Significant decrease in steroid 
requirement in all treatment arms 
compared within the groups vs. 
baseline. Only significant difference 
noted between troleandomycin 
+ methylprednisolone group and 
methylprednisolone only group: 80% ± 
6% vs. 44% ± 14%, respectively

Troleandomycin is 
noted to increase 
bioavailability of 
methylprednisolone 
[121] and also 
reduce elimination 
of theophylline 
[122,123]

Shoji, 1999 
[118]

14 adult 
patients 
with mild to 
moderate 
aspirin-
intolerant 
asthma

Double-blinded, 
randomized, crossover 
study
Roxithromycin 150 mg/
bid vs. placebo, for 8 
weeks

No improvement in PFT.
Improvement in symptom score.
Decrease in blood eosinophils and ECP 
(roxithro vs. placebo: 12.4 ± 2.3 vs. 42.8 
± 7.6 x104/ml, 3.6 ± 1.4 vs.  
14.8 ± 7.6 mg/l)
Decrease in sputum eosinophils and ECP 
(roxithro vs. placebo: 10 ± 6 x104/ml vs. 
90 ± 33 x104/ml, 0.4 ± 0.1 vs.  
1.7 ± 0.9 mg/l)

Amayasu, 
2000 [16]

17 adult 
patients 
with mild to 
moderate 
stable asthma

Double-blinded 
randomized, crossover 
study
Clarithromycin 200 mg 
bid vs. placebo, for 8 
weeks

No improvement in PFTs.
Improvement in symptom score. 
Decrease in sputum and blood 
eosinophils: sputum 11 ± 6 x104/ml vs.  
88 ± 36 x 104/ml, blood 12.0 ± 2.4 x  
104/ml vs. 47.5 ± 6.6 x 104/ml, 
clarithromycin vs. placebo, mean ± SD.
Decrease in hyper-reactivity: Log (PC20-
methacholine) 2.96 ± 0.57 vs.  
2.60 ± 0.51, chlarithromycin vs. placebo

Black, 2001 
[114]

232 adult 
patients with 
asthma and 
IgG/IgA to C. 
pneumoniae

Double-blinded 
randomized, placebo-
controlled study.
Roxithromycin 150 mg/
bid vs. placebo, for 6 
weeks

Improvement in evening PEF (change in 
evening PEF, roxithromycin vs. placebo = 
15 l/min vs. 3 l/min, p = 0.02).
No improvement in FEV1.
Nonsignificant improvement in symptom 
score

Kraft, 2002 
[95]

55 adults 
patients with 
stable asthma

Double-blinded, 
randomized placebo-
controlled study,
clarithromycin 500 mg/
bid vs. placebo.
The patients were 
evaluated by PCR for 
infection with Chlamydia 
or Mycoplasma

Improvement in FEV1 found only in PCR-
positive patients in treatment group: 
mean ± SEM, 2.50 ± 0.16 l to 2.69 ± 
0.19 l. 
More decrease in inflammatory 
cytokines (TNF-α, IL-5, IL-12 mRNA in 
BAL) in PCR-positive group

PCR for Chlamydia 
or Mycoplasma was 
positive in 31 out of 
55 patients
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Author,  
year [ref.]

Patients
Study design/
interventions

Main outcomes Note

Kostadima, 
2004 [116]

75 adult 
patients with 
stable asthma 
on moderate 
dose of inhaled 
budesonide

Double-blinded 
randomized placebo-
controlled study with 3 
arms.
Clarithromycin 250 mg/
bid vs. clarithromycin 250 
mg/tid vs. placebo, for 8 
weeks

No difference in spirometry findings.
Improvement in PC20-methacholine 
only in clarithromycin treated groups 
with trend favouring higher dose group 
(before vs. after, median: clarithro bid 
0.3 mg vs 1.3 mg, clarithromycin 250 
mg/tid 0.4 mg vs.2 mg, and placebo 0.4 
mg vs. 0.3 mg)

Strunk, 
2008 [120]

55 children 
with moderate-
to-severe 
asthma who 
require inhaled 
steroid for 
control

Double-blinded 
randomized placebo-
controlled study, 3 arms
azithromycin, 
montelukast, or placebo. 
Primary outcome was 
time to inadequate 
control as inhaled steroid 
dose was gradually 
tapered

No difference were noted for either 
treatment compared with placebo 
in time to inadequate control status: 
azithromycin vs. montelukast vs. placebo 
= 8.4 wks (95%CI 4.3-17.3) vs. 13.9 
wks (95%CI 4.7-20.6) vs. 19.1 wks 
(95%CI = 11.7-infinity)

The study was 
prematurely 
terminated due to 
futility

Simpson, 
2008 [17]

45 adult 
patients 
with severe 
refractory 
asthma

Double-blinded, 
randomized placebo-
controlled study.
Clarithromycin 500 mg 
bid vs placebo, for 8 
weeks

Decrease in IL-8: clarithro vs. placebo, 
3.9 ((IQR = 1.8-5.4) vs. 6.4 (IQR = 3.7-
11.3), p < 0.05
Decrease in MMP-9 (ng/ml): clarithro 
vs. placebo, 3074 (IQR = 1,806-7,084) 
vs. 6724 (IQR = 3620-14,335), p < 
0.05.
No difference in FEV1 and symptoms 
score.
No significant improvement in sputum 
neutrophil counts and neutrophil 
elastase level. 
These trends are more pronounced in 
noneosinophilic asthma patients

Sutherland, 
2010 [119]

92 adult 
patients 
with mild-
to-moderate 
asthma that 
was not well 
controlled

Double-blinded 
randomized placebo-
controlled study. Stratified 
according to PCR result 
for M. pneumoniae or C. 
pneumoniae.
Clarithromycin 500 mg/
bid vs. placebo, for 16 
weeks

No difference in ACQ score.
No difference in PFTs.
No difference in exhaled nitric oxide
Improvement in bronchial hyper-
responsiveness measured in PC20-
methacholine: mean ± SE, 1.2 ± 0.5 
doubling doses (p = 0.02)

Originally 
planned to recruit 
approximately 75 
patients in each 
arm. However, the 
recruitment for PCR-
positive patients 
did not reach the 
goal due to lower-
than-expected PCR 
positivity. Only 12 
out of 92 patients 
were PCR positive 

Table II. Summary of clinical trials: double-blinded randomized controlled trials whose treatment 
duration is at least 4 weeks with clinical outcomes

95%CI = 95% confidence interval; ACQ = asthma control questionnaire; BAL = bronchoalveolar lavage;  
ECP = eosinophil cationic protein; FEV1 = forced expiratory volume at 1 second; IQR = interquartile range;  
PC20-methacholine = provocative concentration of methacholine causing a 20% fall in FEV1;  
PEF = peak expiratory flow; PFT = pulmonary function test; SD = standard deviation; SE = standard error
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The most recently published Cochrane systematic review on macrolides for chronic asthma summa-
rised all relevant randomized controlled trials (RCTs) up to May 2007 [124]. This review identified 7 
RCTs in which asthma was treated with a macrolide for at least 4 weeks. A total of 416 patients were 
recruited. The meta-analysis demonstrated no significant difference in FEV1, despite significant diffe-
rences noted in markers of eosiniphilic inflammation and symptoms. The authors concluded that «the-
se data are insufficient to recommend the routine use of macrolides for control of asthma at present, 
even though some clinical data indicate a positive effect». They pointed out that the quality of these 
studies was generally low and that the patient samples were heterogeneous. They concluded that larger 
well designed studies are needed. 
Since the Cochrane review, there have been 3 RCTs. One involved children and the others included 
adult patients. These three new RCTs are also not encouraging.
Strunk et al. included 55 children 6 to 17 years of age with moderate-to-severe persistent asthma [66]. 
They were randomized to 3 groups: 1. placebo, 2. azithromycin (250 mg for those 25-40 kg or 500 mg 
for those > 40 kg once daily), and 3. montelukast 5 mg or 10 mg once daily (based on age). The primary 
outcome was time from randomization to inadequate asthma control. The protocol included a sequential 
budesonide dose reduction after 6 weeks of treatment with investigation medications. The study was ori-
ginally designed to recruit 210 randomized children. However, the study was terminated after randomi-
zed 55 patients due to futility (median time to inadequate control status: azithromycin median 8.4 weeks 
(95%CI = 4.3-17.3), montelukast 13.9 weeks (95%CI = 4.7-20.6), placebo 19.1 weeks (95%CI = 11.7-infi-
nity). Of note, the well accepted treatment with montelukast also did not show benefit in this study. 
Simpson et al. randomized 46 adult patients with symptomatic refractory asthma to chlarithromycin 
500 mg/bid vs. placebo for 8 weeks [17]. The randomization was stratified according to high and low 
neutrophil counts in the sputum. The treatment group demonstrated significant reduction in airway 
IL-8 levels and MMP-9 levels compared with placebo (IL-8, ng/ml: 3.9 (IQR = 1.8-5.4) vs. 6.4 (IQR = 
3.7-11.3); MMP-9, ng/ml: 3074 (IQR = 1,806-7,084) vs. 6724 (IQR = 3620-14,335)). There was also a 
trend towards decreased sputum neutrophil counts and improvement in asthma control scores in the 
treatment group; however, these values were not statistically significant when compared to placebo. 
There was also no improvement in spirometric findings. Of the 46 patients, 28 patients had noneosino-
philic asthma and the above mentioned findings were more pronounced in this subgroup.
Sutherland et al. recruited 92 adult asthma patients with mild-to-moderate persistent asthma that was 
not well controlled despite treatment with low-dose inhaled corticosteroids [119]. The patients were 
divided based on the result of lower airway PCR for M. pneumoniae or C. pneumoniae (there were 80 
patients in PCR negative group and 12 in positive group). Within each group, patients were randomi-
zed to either clarithromycn (500 mg/bid) or placebo. The primary outcome was the change in the Asth-
ma Control Questionnaire (ACQ) score after 16 weeks of study treatment. Although underpowered, no 
beneficial effect of clarithromycin was noted in the ACQ score in either patient group or overall. The 
authors also observed no difference in pulmonary function tests, in exhaled nitric oxide concentration, 
or in Asthma Quality of Life Questionnaire Score which were secondary outcomes. There was a small 
improvement in PC20 doubling dose (1.2 ± 0.5, p = 0.01).

Potential adverse effects

A well written summary article by Altenburg et al. finds that gastrointestinal complaints are the most 
common adverse effects of macrolide therapy [1]. Other infrequently reported side effects are rash and 
hepatotoxicity. Rare but well known and potentially significant adverse reactions include ototoxicity and 
cardiac toxicity. Development of antibiotic resistance is also a concern. Given that the benefit of chronic 
macrolide use for asthma is still uncertain, clinicians should use careful judgment in case-by-case bases.
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Conclusion and future directions

Asthma has been recognized as a heterogeneous disease [6]. Corticosteroids have been a mainstay of 
asthma treatment for years. However, it is well recognized that there are subgroups of patients who are 
resistant or not well controlled with corticosteroids and there is a strong need for other effective thera-
pies. Recently, newer agents that are more focused on specific pathologic processes are increasingly 
available. Anti-IgE monoclonal antibody (omalizumab), anti-IL5 monoclonal antibody (mepolizu-
mab), anti-TNF-α agents (such as infliximab, etanercept, adalimumab, golimumab), and anti-leuko-
triene agents (such as montelukast, zileuton) are some examples. Even though these agents may not be 
as effective as corticosteroids in the general asthma population, they can be very effective in certain 
subgroups of asthma patients. Macrolides have been recognised for their immunomodulatory effects 
and have attracted great interest as an additional asthma treatment. However, clinical trials conducted 
on general asthma populations have been conflicting. It may be that there are not enough well designed 
RCTs, but it may also be the case that macrolides are only effective in certain subgroups of asthma pa-
tients. Macrolides exert their immunomodulatory effects through a wide range of mechanisms as di-
scussed above. However, suppression of neutrophilic inflammation through inhibition of NF-kB and 
AP-1 pathways seems to be a major mechanism 
[78,125-132]. Hence, the most promising asth-
ma subpopulations in which macrolides may be 
most effective are patients with noneosinophilic 
asthma and patients with chronic airway infec-
tion. Additional well designed clinical trials are 
needed to answer this question. Until then, ma-
crolides will remain as a potentially attractive 
but not yet proven treatment option of asthma.
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