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2. improvement of patient quality of life 
(QOL).

In clinical practice, the most validated sur-
rogate outcomes are: HBV DNA suppres-
sion, hepatitis B e antigen (HBeAg) clear-
ance and relative sero-conversion, hepatitis 
B surface antigen (HBsAg) loss and HBsAb 
sero-conversion, aspartate transaminase 
(AST) and alanine transaminase (ALT) 
normalizations, and histological improve-
ment (i.e., fibrosis reduction) [2,3]. Based 
on these data, three definitions of HBV cure 
are proposed, such as complete, functional 
and partial.

Complete cure is represented by unde-
tectable HBsAg in serum and eradication 
of HBV DNA, including intrahepatic cova-

IntroduCtIon

In contrast to the three main pandemic 
infectious diseases such as tuberculosis, 
malaria, and HIV/AIDS, mortality for viral 
hepatitis rose between 2000 and 2015, be-
ing mortality attributable to chronic HBV 
infection the most prevalent [1]. HBV in-
fection is a major cause of liver cirrhosis and 
hepatocellular carcinoma (HCC). Although 
HBV infection can effectively be prevented 
by vaccination, there is no eradicating cure 
for those who acquired the infection.

The main clinical goals of therapy for 
chronic hepatitis B (CHB) are:
1. improvement of survival by preventing 

cirrhosis and end-stage liver diseases;
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Abstract
Current treatments for chronic hepatitis B are able to provide a sustained suppression of the viral 
replication (i.e., persistent undetectability of HBV DNA). This leads to improvement of liver 
fibrosis and reduction of clinical complications. However, hepatitis B surface antigen (HBsAg) 
persists in most patients, probably justifying a still increased risk of hepatocellular carcinoma. 
Indeed, obtaining a complete and sterilizing cure with elimination of the covalently closed 
circular DNA (cccDNA) or silencing its activity is still a holy grail. New molecules are under 
evaluation to suppress viral replication acting on multiple phases of the HBV cycle or improve 
specific immune response against HBV. Molecules acting on HBV cycle have already showed 
encouraging results, such as entry inhibitors, small interfering RNAs (siRNAs), capsid assembly 
modulators (CAMs), nucleic acid polymers (NAPs). Also, promising results have been observed 
with immune-modulators, therapeutic vaccines, and other immune-based approaches. Among 
these, toll-like (TLR) or anti-programmed receptor agonists antibody 1 of the cell death protein 
(PD1) (e.g., nivolumab) are most promising. This paper describes newer drugs appearing on the 
horizon, including antiviral drugs targeting different steps of the HBV life cycle and therapeutic 
approaches based on immune-modulation. 
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lently closed circular DNA (cccDNA) and 
integrated HBV DNA.

Functional cure is defined by sustained 
HBsAg loss (with or without HBsAb se-
ro-conversion), undetectable serum HBV 
DNA, persistence of cccDNA in a tran-
scriptional inactive status, and the absence 
of spontaneous relapse after cessation of 
treatment.

Lastly, partial cure is characterized by 
detectable HBsAg, but persistently unde-
tectable HBV DNA in serum after a finite 
course of treatment [4,5].

Current treatments for hepatitis B are 
pegylated-interferons (Peg-IFNs) and 
nucleos(t)side analogs (NAs).

Peg-IFN can determine a sustained viro-
logical response (SVR), but only in selected 
patients and in a small percentage of cases. 
Moreover, Peg-IFN can improve immune 
control of HBV infection, with satisfactory 
rates of HBeAg sero-conversion but only in 
few cases hepatitis B surface antigen (HB-
sAg) is cleared, albeit in such cases HBV 
DNA suppression is achieved [6,7].

Use of nucleos(t)ide analogs achieves 
HBV DNA suppression. However, their ad-
ministration, in most cases, must be contin-
ued long-life. Consistent data demonstrated 
that long-term control of HBV replication 
by the most potent drugs (entecavir—ETV 
and tenofovir—TDF) improves liver histol-
ogy, with a decreased risk of progression to 
cirrhosis, end-stage liver disease, HCC and 
improved long-term survival [8]. Whilst 
these drugs obtain long-term suppression 
of HBV DNA in plasma, they are not able 
to obtain elimination or stable silencing of 
the cccDNA expression.

This paper describes newer drugs appear-
ing on the horizon, including antiviral drugs 
targeting different steps of the HBV life 
cycle and therapeutic approaches based on 
immune-modulation. Probably, the most ef-
ficient use of these drugs is in combination.

AntIVIrAl drugs tArgetIng 
dIfferent steps of HBV lIfe 
CyCle

entry inhibitors

Myrcludex B (MyrB), also known as bule-
virtide, is a lipopeptide derived by a portion 
of the preS1 domain of HBV L-surface pro-
tein. It blocks the sodium taurocholate co-
transporting polypeptide (NTCP), which 

is an essential step for HBV entry [9-11]. 
This drug has initially been used for treat-
ment of HBV/HDV co-infected patients, 
aiming at better control of HDV replica-
tion [12,13]. With this objective in mind, a 
multicenter, open-label, phase 2 clinical trial 
was conducted. In this trial, MyrB signifi-
cantly reduced HDV RNA levels in serum 
and induced ALT normalization [14,15]. 
Although adverse events were reported 
mostly as mild or moderate, elevated plasma 
bile acid levels were found as a typical effect 
of this drug. This effect was due to blocking 
of NTCP mediated reuptake of circulating 
bile acids from the portal blood into the 
liver [16]. Indeed, a prospective trial on 12 
healthy volunteers treated with TDF and 
MyrB showed substantially increased plasma 
bile acids but this was not associated with 
any clinical symptoms typically attributed 
to cholestasis such as pruritus or steatorrhea 
[17]. Owing to its mechanism of action, it 
is unlikely that MyrB will provide sustained 
HBsAg decrease, at least when used alone. 
Moreover, one can hardly conclude that this 
drug would provide significant benefits in 
terms of cccDNA reduction.

small interfering rnAs (sirnAs)

Small interfering RNAs (siRNAs) are 
small synthetic RNA molecules able to rec-
ognize complementary sequences of viral 
messenger RNA (mRNA) and pregenomic 
RNA (pgRNA). This induces mRNA degra-
dation mediated by endonuclease enzymes.

ARO-HBV ( JNJ3989) was evaluated in 
a phase II, multi-dose escalating study in 
patients with chronic HBV infection. This 
study showed that three monthly doses of 
ARO-HBV, administered subcutaneously, 
resulted in a median reduction of circulat-
ing HBsAg of approximately 2.0 log10 at 
the third month and all treated patients 
showed a reduction greater than 1.0 log10. 
The drug was well tolerated, with generally 
mild and self-limiting injection site adverse 
events in approximately 10% of cases [18]. 
ARB-1467 was tested in another phase II 
study, showing > 1 log10 reduction of HB-
sAg in 7/11 study patients. HBsAg reduc-
tions were dose-dependent, since they were 
greater with 0.4 mg/kg doses than with 
0.2 mg/kg [19]. Also in this case, given the 
post-transcriptional site of action, it is un-
likely that cccDNA reduction is achievable 
with the use of these drugs as mono-therapy. 
Moreover, the number of patients studied 
was extremely limited, thus further clinical 
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investigations are needed with both ARO-
HBV and ARB-1467.

Capsid assembly modulators (CAMs)

Capsid assembly modulators (CAMs) are 
small molecules, heterogenic for chemical 
structure (phenylpropenamides and sul-
famoylbenzamides), which inhibit HBV 
pgRNA encapsidation, an essential step for 
the subsequent viral DNA synthesis.

In recent years, several CAMs have been 
studied such as ABI-H0731, JNJ-6379, 
and NVR 3-778. All three compounds led 
to a significant decline in HBV DNA, but 
with smaller reductions of HBV RNA and 
quantitative HBsAg (qHBsAg). Impor-
tantly, NVR 3-778 was used in association 
with Peg-IFN, leading to greater reduction 
of HBV DNA [20-22].

nucleic acid polymers (nAps)

Nucleic acid polymers (NAPs) are broad 
spectrum antiviral agents whose mechanism 
of action is not well defined. Their antiviral 
activity in HBV infection may be due to 
blocking of HBsAg release from hepato-
cytes. After a lead-in therapy with TDF, 
40 patients were randomized into an ex-
perimental group (48 weeks of TDF + Peg-
IFN and REP 2139-Mg or REP 2165-Mg) 
or an adaptive control group (24 weeks of 
TDF + Peg-IFN followed by 48 weeks of 
experimental therapy including REP 2139-
Mg or REP 2165-Mg) [23]. The majority of 
participants (more than 80%) achieved ei-
ther HBV DNA <2000 IU/ml with normal 
transaminase levels or functional cure with 
undetectable HBsAg and HBV DNA. Al-
though a substantial proportion of patients 
showed transaminase flares, they were cor-
related with better treatment response, prob-
ably reflecting immune-clearance of infected 
hepatocytes.

There results are encouraging, however 
since the drug may promote accumulation 
of HBsAg into hepatocytes, it is unclear 
whether such accumulation is safe. Indeed, 
HBsAg could display oncogenic potential 
which may impact on risk of HCC over the 
long term [23-25].

Candidate therapeutic strategies to 
target covalently closed circular dnA 
(cccdnA)

Inhibition of cccDNA formation could be 
used in theory to eradicate HBV infection. 

However, many of the key steps in cccDNA 
formation require host nuclear molecules 
like enzymes and nuclear histones [26,27], 
but targeting host cell molecules might have 
several adverse effects. More studies should 
be conducted to better understand if a virus-
host protein interaction could be targeted 
without significant adverse events.

Once formed, cccDNA can potentially 
be targeted by nucleases or transcription 
activator-like effector nucleases. The de-
velopment of CRISPR-Cas9 technology 
(clustered regularly interspaced short palin-
dromic repeats) may be useful to edit HBV 
cccDNA. Preclinical experiments showed 
that CRISPR-CAS9-based strategies deter-
mined mutations and deletions which func-
tionally inactivated cccDNA and were able to 
clear more than 90% of HBV DNA [28,29].

Control of the transcriptional activity 
could be obtained by silencing of cccDNA 
through the induction of the host cell epi-
genetic machinery using general epigenetic 
modifiers. However this effect may be as-
sociated with adverse events on cell ho-
meostasis.

HBV X protein (HBx) is a therapeutic 
target of potential interest. It is implicated 
in cccDNA stability and expression, inter-
acting with damaged DNA binding protein 
(DDB1), redirecting the ubiquitin ligase 
activity of the CUL4-DDB1 E3 complexes 
against SMC 5/6 complexes, therefore sup-
pressing HBV transcription. HBx-DDB1 
interaction may be used to block cccDNA 
transcription and several molecules have 
been studied. Pevonedistat, a NEDD8-acti-
vating enzyme inhibitor, could restore SMC 
5/6 levels and suppress viral transcription 
and protein production in cultured hepa-
tocytes [30,31]. Nitazoxanide, a thiazolide 
agent already approved by the US Food and 
Drug Administration for protozoan enteri-
tis, showed efficient inhibition of the HBx–
DDB1 interaction, restoring SMC5 levels 
and suppressing viral transcription and pro-
tein production in cultured hepatocytes [30]. 
A pilot clinical trial in 9 patients showed un-
detectable HBV DNA (<38 IU/ml) in 8/9 
patients after 4-20 weeks of treatment [32].

In conclusion, while several mechanisms 
have been proposed to eradicate or silence 
cccDNA expression (synthesis control, con-
trol of transcriptional activity and genome 
clearance), such strategies are limited by the 
stability of cccDNA in host cells, and for the 
difficulty in targeting host molecules with-
out producing significant adverse events.
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Also qHBsAg levels were reduced, 16/49 
patients obtaining reduction in qHBsAg 
levels at week 24 by more than 0.5 log [35]. 
Activation of systemic innate or adaptive im-
mune responses was also observed, especially 
with higher drug dosages [36].

The toll-like receptor (TLR) agonists 
promote up-regulation of type 1 interferon 
and other cytokines, activating natural killer 
cells and enhancing innate immunity against 
HBV. GS-9620 is a TLR7 agonist. Strong 
antiviral activity was observed in HBV-in-
fected chimpanzees and woodchucks, but 
this effect was transient. Clinical trials on 
GS-9620 were conducted showing no side 
effects on humans but little antiviral activity. 
However, it is possible that this evidence is 
related to suboptimal dosages used in pa-
tients: 4 mg vs. 1 mg/kg in chimpanzees. 
Dose-related expression of interferon-stim-
ulated gene 15 (ISG15) was also observed, 
but there was no significant decline of serum 
HBsAg levels [37-39]. GS-9688, a potent 
and selective, oral, small-molecule agonist of 
TLR-8 was evaluated in a phase 1b clinical 
trial in patients with chronic virally sup-
pressed CHB. Favorable immunological re-
sponses were observed (increase in IL-12p40 
and IL1RA) but no significant changes of 
HBV replication were obtained [40].

drugs acting on specific immune 
response

GS 4774 is a therapeutic vaccine engi-
neered to activate an HBV-specific T cell 
immune response. It was experimented at 
three different dosages in six administrations 
for a total of 20 weeks in combination with 
oral antiviral therapy (OAV), compared with 
a control group of OAV only. Efficacy was 
measured by HBsAg decline from baseline 
to week 24. There were no significant dif-
ferences among groups in the mean HB-
sAg decline from baseline to week 24 or 
48, although five HBeAg-positive patients 
receiving GS-4774 experienced HBeAg loss 
versus none in the control group. The treat-
ment was generally safe and well tolerated, 
with no serious adverse events or discontinu-
ations reported [41].

Check point inhibitors (anti-PD-1) are 
able to determine a functional restoration 
of peripheral and intrahepatic exhausted 
HBV specific T cells. Gane et al. conducted 
a phase1 clinical study in 8 patients treated 
with nivolumab with or without GS-4774 
and observed that a single dose of nivolumab 
up to 0.3 mg/kg was well tolerated. A signifi-

IMMune-ModulAtors

In chronic HBV infection, prolonged ex-
posure to viral antigens is associated with 
functional impairment of the immune re-
sponse against this virus, both systemically 
and locally within the liver [33]. Therefore, 
development of drugs able to restore im-
mune response against HBV may be very 
useful. However, since the liver milieu may 
be profoundly de-regulated in patients with 
CHB, such immune-therapy strategies may 
not work. So, despite quite favorable data, it 
remains to be determined in which condi-
tions immune-therapy should be pursued. 
It is possible that antiviral therapy should 
precede immune-therapy to reduce HBV 
DNA and hence liver inflammation which 
may favor response to immune-therapy. 
Also, treating patients at early stages of the 
infection when inflammation and fibrosis 
are still absent or mild (e.g., noninflamma-
tory stages or immune-tolerance phase of 
the infection) may be beneficial.

Compounds for immune-therapy are al-
ready under study, acting either on nonspe-
cific innate immunity or specific adaptive 
immunity against HBV. Among the first 
group of compounds acting on nonspecific 
innate immunity, immune stimulators, such 
as inarigivir, and toll-like receptor agonists 
(TLR), such as GS-9620 (TLR7) and GLS-
9688 (TLR8) have been studied. Among 
the second group of compounds, which may 
boost specific response, therapeutic vaccines 
(e.g., GS-4774) and other therapeutic ap-
proaches such as anti-programmed cell 
death protein 1 (anti-PD-1) antibodies (e.g., 
nivolumab) were object of important studies. 
Probably, associations of these two types of 
drugs with or without antiviral therapy is the 
next step of HBV treatment if eradication 
of this infection is pursued.

drugs acting on non-specific immune 
response

Inarigivir is a novel oral selective immune-
modulator with associated antiviral activity. 
It acts as a retinoic acid-inducible gene-I 
(RIG-I) agonist, inducing type I and type 
III interferon (IFN) intracellular produc-
tion in order to boost immune-response. 
Also, a direct antiviral activity was observed 
through interference with HBV polymerase 
transcription [34]. A dose-related reduction 
of HBV DNA and RNA levels (0.58–1.54 
log decrease) was observed in human trials, 
particularly in HBeAg-negative patients. 
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fected cells and tumors. These TCR-T cells 
may recognize HBV epitopes presented on 
infected hepatocytes and even HCC cells 
with HBV-DNA integration in both ex-
perimental models and selected patients 
with HBV-related HCC relapses. How-
ever, safety concerns on possible irreversible 
structural and functional liver damage by cy-
totoxic TCR-T cells have limited the clinical 
usage of this immunotherapeutic approach. 
Modified TCR-T cells to reduce cytotoxic-
ity and life span of TCR-T cell could reduce 
this safety concern [47,48].

ConClusIons

Despite the numerous therapeutic ap-
proaches by using drugs targeting different 
steps of the HBV life cycle and immune-
modulating strategies, to date there are no 
validated alternatives to current antivirals or 
Peg-interferon.

However, it is important to continue 
searching and experimenting new com-
pounds. Also, the way forward appears to 
be combination of drugs acting on differ-
ent mechanisms (e.g., immune-therapy ap-
proach plus antivirals). With this objective 
in mind, more strategic studies should be 
conducted.

Lastly, we need to know what patients are 
better suited to achieve a functional cure. 
Probably, patients at earlier stages of infec-
tions are the best candidates, implying that 
strategies to achieve earlier diagnoses should 
be pursued. Until these possibilities are real-
istic, we may strengthen more on prevention, 
assuring vaccination and safe behaviors (e.g., 
safe sex) to the largest number of individu-
als as possible.

Key points
 y Mortality for complication or sequelae of viral hepatitis rose between 2000 and 2015, be-
ing HBV infection largely prevalent.

 y Interferon therapy, which is poorly tolerated due to frequent adverse events, is effective only 
in patients who are carefully pre-selected on the basis of predictive criteria (pre-therapy 
and stopping rules during therapy).

 y The NAs, although well tolerated should be administered life-long in most cases.
 y The current anti-HBV therapies achieve a functional cure only rarely and complete cure 
characterized by destruction of the cccDNA or stable silencing of its activity has not been 
demonstrated yet.

 y Therefore, new drugs ensuring functional cure are needed and not far away.
 y Probably, it is only through combination of different strategies (e.g., antivirals and im-
mune-modulators) and by a careful selection of patients treated in the early stages of the 
HBV infection that we will move towards a new era in HBV treatment.

cant decline in qHBsAg in patients receiving 
nivolumab was also observed, with no added 
benefit using also GS-4774 [42]. Recently, 
another trial showed qHBsAg reduction 
and in one patient becoming undetectable 
at week 20 even if an hepatitis flare was ob-
served accompanied by a significant increase 
in peripheral HBsAg-specific T cells [43].

Human monoclonal antibodies and tCr/
CAr-t cells

Promising results were obtained with 
monoclonal antibodies (mAbs) and TCR/
CAR-T cells. This approach is likely to be 
complementary to antiviral treatment and 
has been extensively reviewed by Cerino 
et al. [44]. Current evidence suggests that 
both T and B cell responses are necessary 
to obtain HBV eradication. Supporting 
this hypothesis is that HBV vaccines and 
Ab serum may protect exposed patients 
from new infections (e.g., newborns from 
infected mothers). However, this effect is 
only possible when vaccines and Ab serum 
are given early, while impact of such strate-
gies in patients already infected and with a 
viral reservoir already established into he-
patocytes is not supported by data. Impor-
tantly, current research aims at finding spe-
cific epitopes to be targeted more effectively. 
Interestingly, a linear epitope (aa 119-125 of 
HBsAg) may promote HBV clearance and 
block new rounds of infection [45]. Also, 
in murine models, humAbs targeting the 
NTCP-binding site of preS1 reduced HBV 
viremia and HBsAg levels [46].

Adoptive transfer of lymphocytes express-
ing engineered T cell receptors (TCRs) is a 
promising immunotherapeutic option which 
specifically targets antigens from viral-in-
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